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We have developed a computational method of protein design to detect amino acid
sequences that are adaptable to given main-chain coordinates of a protein. In this
method, the selection of amino acid types employs a Metropolis Monte Carlo method
withascoring function inconjunctionwiththeapproximationof freeenergiescomputed
from 3D structures. To compute the scoring function, a side-chain prediction using
another Metropolis Monte Carlo method was performed to select structurally suitable
side-chain conformations from a side-chain library. In total, two layers of Monte Carlo
procedures were performed, first to select amino acid types (1st layer Monte Carlo) and
then to predict side-chain conformations (2nd layers Monte Carlo). We applied this
method to sequence design for the entire sequence on the SH3 domain, Protein G, and
BPTI. The predicted sequences were similar to those of the wild-type proteins. We com-
pared the results of the predictionswith andwithout the 2nd layerMonte Carlomethod.
The results revealed that the two-layer Monte Carlo method produced better sequence
similarity to the wild-type proteins than the one-layer method. Finally, we applied this
method to neuraminidase of influenza virus. The results were consistent with the
sequences identified from the isolated viruses.

Key words: free energy, Monte Carlo method, protein design, sequence prediction,
side-chain prediction.

Prediction of the tertiary structure of a protein from a
given amino acid sequence (forward folding) remains diffi-
cult because it requires finding the optimal sequences from
a huge number of amino acid combinations and the cor-
responding conformational space of side-chains. To predict
the folding of even a small protein, a long computational
time using hundreds to thousands of parallelized com-
puters is required (1, 2).

In contrast, the inverse-folding approach, known as pro-
tein design, has been applied to a wide range of biological
problems with successful results (3–26). This approach can
predict the sequences adaptable to a given backbone struc-
ture that are optimized using a scoring function defined
by various physicochemical and statistical parameters.
The predicted sequences will indicate the stable proteins,
and thus this method can be applied to obtaining stable
mutant proteins.

In the protein design method, a large number of
sequences and wide side-chain conformational space
must be examined to obtain the optimal sequence and
the best side-chain conformation (27), respectively. To
achieve these examinations, an accurate scoring function
to select the sequence (28, 29) and an accurate predic-
tion method of side-chain conformations are required.
Appropriate combination of the scoring function and the

side-chain prediction method will increase the accuracy of
the determined sequences.

A number of side-chain prediction methods have been
developed and reported to yield accurate results (30, 31).
The methods producing high efficiency searches of the
optimal side-chain conformations include the Monte Carlo
method (16, 32), genetic algorithm (10, 33), and dead-end
elimination (6, 34).

The scoring function should be based on an evaluation of
the difference in thermodynamic stability between two
mutant proteins. This theory is similar to that of a free-
energy perturbation method, in which the free-energy
difference resulting from a single amino acid mutation,
DDG, is computed through a molecular dynamics simu-
lation (35). The perturbation method, however, is time-
consuming and difficult to perform for multiple mutations,
making this method ineffective for protein design. Scoring
functions using physicochemical parameters (34), statisti-
cal parameters (36), or combinations of these parameters
(33) are frequently applied to protein design, although
these functions only give a rough approximation of DDG.
These scoring functions, however, result in a considerably
shorter computational time than more accurate methods
(i.e., the free-energy perturbation method). Rapid com-
putation makes possible the examination of a large number
of side-chain conformations. Therefore, we can expect to
obtain energetically and structurally acceptable amino
acid sequences for a given main-chain using this accurate
scoring function.
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In this study, we have developed a structure-based
protein design method using a scoring function that
approximates DDG. In this method, the optimal side-chain
conformation at a backbone position is selected from a
large side-chain library using a Metropolis Monte Carlo
method (2nd layer Monte Carlo procedure). During this
procedure, the free energy, DG, is computed by counting
the various side-chain conformations sampled. The amino
acid type at that position is then selected with a second
Monte Carlo method (1st layer Monte Carlo procedure).
From these two Monte Carlo procedures, the scoring
function corresponding to DDG is computed, allowing
sequences adaptable to the backbone to be obtained.
We assessed the accuracy of this method by the application
to three systems, SH3, Protein G, and BPTI. We demon-
strated that the main-chain conformations of these pro-
teins have a structural space that acceptable using a
variety of amino acid sequences in which the specific
amino acids differed from those in the wild-type protein,
but had similar properties.

We then predicted the amino acid types in the influenza
virus neuraminidase (NA) molecule. Without treatment,
infection with influenza virus causes significant mortality
worldwide. The influenza virus has two major glycopro-
teins, hemagglutinin (HA) and NA, on the viral surface.
This virus has a remarkable capacity to escape from the
host immune system by changing the antigenicity of its sur-
face proteins. This variability is especially potent for the
HA molecule, which has both receptor binding and fusion
activities that initiate infection of the host cell. The NA
molecule plays an important role in the release of viral

particles from infected cells, making NA an attractive target
of anti-influenza drugs (37). The amino acid sequences of
NA differ by approximately 50% among the subtypes
of influenza A virus. To understand the mechanisms of
infection, it is critical to be able to predict the variable
sites within the NA molecule. Based on the 3D structure
of the NA, the predicted sequences correlated well with
those obtained from isolated viral strains. The majority of
the residues contacting the substrate, sialic acid, were
consistent with those found in isolated viral strains.

We therefore discuss the relationship between amino
acid properties and the characterization of the protein
from the results of our analysis of the generated amino
acid sequences.

MATERIALS AND METHODS

To predict the amino acid sequences that were adaptable
to the main-chain of a query protein, first of all, two Monte
Carlo procedures on different layers were performed
in this work (Fig. 1). A randomly generated amino acid
type, first of all, was assigned to a query position (a residue
site on the main-chain); the judgment if an amino acid
was adaptable to the main-chain was made with a scoring
function that was generated from a thermodynamic ensem-
ble consisting of the possible side-chain conformations.
To generate the ensemble, a side-chain library was con-
structed from a variety of side-chain conformations taken
from known protein structures. The scoring function was
defined as the free-energy difference (DDG) between the
folded and unfolded states of the protein. Both the random

Fig. 1.Two layersMonteCarlo procedures.The 1st layer Monte
Carlo procedure manages the selection of the side-chain conforma-
tion. In this procedure, the optimal side-chain conformation was
selected. At the mean time, DGE

folding value was calculated from the
generated conformations. Analogously, DGT

folding was calculated. The

2nd layer Monte Carlo procedure manages the selection of amino
acid types using DDGE!T. If DDGE!T was negative, T was selected.
IfDDGE!T waspositive,arandomnumber,p,wasgeneratedthatwas
uniformly distributed between 0.0 and 1.0. If p > exp {DDGE!T/RT},
E was replaced by T. If not, E was kept at that position.
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selection of the amino acid type and the judgment of the
side-chain adaptability to the main-chain were performed
using the Metropolis Monte Carlo method. This procedure
was executed repeatedly at every residue site. The details
of the procedure follow.

Procedure for Selection of Amino Acid Types—Before
beginning the sequence prediction, all residues on the
given main-chain were set to Gly, and hydrogen atoms
were added. First, the N-terminal residue served as the
initial query position to which an appropriate amino
acid should be assigned. An amino acid type at the
query position was set by translating genetic code (codon)–
based random sequences, which consisted of three-letter
quaternary code (A, T, C, G) that avoided those sequences
corresponding to stop codons. The codon was modulated
to reproduce the frequency of amino acids occurring in
wild-type proteins; in this sense, the codon was not entirely
random.

Next we consider the change of amino acid type from a
to b at the query position. At the initial prediction stage,
a = Gly. To present the method in a general form, however,
we assume that a can be any amino acid type. The free-
energy difference with respect to folding for each amino
acid is given as:

DGX
folding ¼ GX

folded - DGX
reference, ð1Þ

where the superscript X designates a or b; when X = a,
the computation is performed for amino acid a, while when
X = b, it is computed for b. In this study, the unfolded
state is referred to as the ‘‘reference state,’’ from which
the free-energy difference is measured. Then, DDGa!b is
defined as

DDGa!b ¼ DGb
folding - DGa

folding=DGb!a
folded - DGb!a

reference:

ð2Þ

If DDGa!b is less than zero, amino acid b is thermodyna-
mically more adaptable to the given main-chain than a.
Note that DDGa!b is commonly used in free-energy per-
turbation studies, in which the computations are based
upon a thermodynamic cycle. To select an appropriate
amino acid at the query position, we used DDGa!b as
the scoring function.

The free energy, DGX
folding in Eq. 1 of the folded state was

defined as:

GX
folded ¼ �kTlnZX

folded, ð3Þ

where k and T are the Boltzmann constant and tem-
perature, respectively. In this study, T was set at 300 K
in all the procedures. The ZX

folded is the partition function
defined as:

ZX
folded ¼

XN

i¼1

expf�EX
i =kTg, ð4Þ

where EX
i is the potential energy of the system, i specifies a

randomly generated side-chain conformation for amino
acid X, and N is a number of the side-chain conformations
generated. The mechanism by which the side-chain con-
formations are generated is described later. When a is Gly,
the side-chain conformation is unique. The free energy, as
currently defined, does not take into account the entropic

effect from the main-chain conformational variety, because
the main-chain conformation is fixed. ZX

folded is a quantity
computed from the 2nd layer Monte Carlo sampling. As
shown in ‘‘RESULT’’ section, the introduction of the 2nd
layer Monte Carlo sampling improved the prediction accu-
racy. Note that if N =1, ZX

folded is equal to EX
1 . This means

that for N = 1 the scoring function is reduced to a similar
form with those used in other methods (6, 38) because the
scoring function is computed only from single side-chain
conformation in this case.

EX
i was defined as:

EX
i ¼ EX

non-bonded þ EX
solv, ð5Þ

where EX
non-bonded and EX

solv are non-bonded interactions and
solvent energies, respectively, for the conformation i of
amino acid X. The parameters necessary to compute
EX

non-bonded were taken from the AMBER force field (39)
with a dielectric constant of e = 4r (r: atom–atom distance).
ABMER is a molecular dynamic package and it is widely
used in the field of computational biology. The electrostatic
interaction was truncated at a cutoff distance of 12 s,
which is generally used in molecular dynamics and
mechanics studies.

The solvent term EX
solv is important to obtain accurate

free-energy differences between the folded and unfolded
states. Several approximated solvent energies have been
applied to the protein design issue (40, 41). Here we used
a distance-dependent dielectric model with surface area–
dependent solvent energy, since this combination has often
been used and is successful for non-polar residues in the
protein design (34, 42). Here, EX

solv was given by:

EX
solv ¼

XM

j¼1

sjAj ð6Þ

where M is the number of atoms, and Aj and sj are the
solvent-accessible surface area of the jth atom and its con-
tribution to EX

solv, respectively. The values for sj were taken
from the parameters set by Ooi and Oobatake (43).

The free energy GX
reference (Eq. 1) for the unfolded state was

calculated in the similar way to GX
folding. The exact descrip-

tion of the unfolded state, however, in which the poly-
peptide chain fluctuates in a wide conformational space,
is difficult using this prediction method. Therefore, the
unfolded state was approximated as a single residue at
the query position, which consists of only the query posi-
tion and neglects the other positions. The various side-
chain conformations of amino acid X were generated on
the main-chain; the potential energy EX

i was calculated
to obtain GX

reference.
After calculating the scoring function DDG, the Metro-

polis Monte Carlo algorithm was used to determine if
amino acid a could be replaced by b at the query position:
if DDG was negative, b was selected. If DDG was positive,
a random number, p, was generated that was uniformly
distributed between 0.0 and 1.0. If p > exp{–DDG/RT},
a was replaced by b. If not, a was retained at that position.
Then, the temperature in this procedure was set at 300 K.
When b was selected, the side-chain conformation of b
was set as the lowest potential energy conformation of
the generated solutions. This completed the procedure
for the first query position.
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Next, the query position shifted to the second residue;
an adaptable amino acid was assigned to the position
according to the procedure described above. To calculate
DDG, the side-chain conformation of the first (i.e.,
N-terminal) residue was fixed as the lowest potential
energy solution determined above. After the same set of
calculations outlined above, the side-chain conformation of
the next query position was set to the lowest potential
energy solution of the sampled conformations. The query
position shifted to the third residue; an adaptable amino
acid was assigned to this position, in which DDG was
computed after fixing the side-chain conformations of the
first and second residues to those of the lowest potential
energies determined before. This procedure was continued
up to the C-terminal residue. The term ‘‘Monte-Carlo cycle’’
is used to specify such a set of trials spanning from the
N- to the C-terminal residues.

After the first Monte-Carlo cycle, the sequence was
altered to have side-chain conformations with the lowest
potential energies. At this stage, the sequence had not yet
converged to the optimal sequence for the scoring function
because the side-chain conformations surrounding the
query position is fixed. Then, the second Monte-Carlo
cycle was started, and after the second Monte-Carlo
cycle, the third Monte-Carlo cycle was executed, and so
on. By performing many Monte-Carlo iterations, the
sequences giving the side-chain conformations with the
optimal energies will be found.

The generation of side-chain conformations (Eq. 4) used
a side-chain library consisting of 9,350 side-chain confor-
mations with tertiary coordinates for 18 amino acid types
(except for Ala and Gly) extracted from known protein
structures. This library consists of non-redundant side-
chain conformations, but eliminated similar side-chain
conformations having root mean square deviation (rmsd)
values less than 0.2 s different from each other.

Application of the Method—To assess the performance
of this method, we first predicted the sequence of the
core residues of two small proteins, SH3 domain (PDB
entry = 1CKA) and Protein G (PDB entry = 1PGB) (44).
These proteins have previously been used for protein
design (4, 25, 34). The core residues, for which the
solvent-accessible surface area was less than 30%, were
chosen to be the same residues detailed by Wernisch
et al. In our computations, all atoms, with the exception
of those to be predicted (i.e., the core residues), were fixed
as the conformations present in the wild-type proteins
throughout the design procedure. We performed 10 pre-
diction procedures, each consisting of 1,000 Monte-Carlo
cycles, yielding 10,000 sequences in total. For every
sequence set, the first 100 amino acid sequences were dis-
carded from the analysis, because these sequences were
influenced by the initial trial sequence, in which all amino
acids were Gly. The remaining 900 sequences were com-
bined into one set of sequences, giving a total of 9,000
sequences. For these sequences, a non-redundant sequence
set was created by removing equivalent sequences.

The method was then applied to the entire sequence of
SH3, Protein G and bovine pancreatic trypsin inhibitor
(BPTI; PDB entry = 5 PTI), with the exception of the
Cys residues that formed disulfide bonds. Here, for each
protein, we performed four prediction procedures, each
consisting of 25,000 Monte-Carlo cycles, to yield 100,000

sequences in total. We also discarded the initial 100
sequences from each of the prediction procedures.

To assess the efficiency of the 2nd layer Monte Carlo
procedure, two predictions were performed: one with and
the other without the 2nd layer Monte Carlo procedure, in
which the number of side-chain conformations, N, were set
at 1 and 15, respectively. For the statistical assessment
of the amino acid selectivity of our method, we calculated
the distributions of sequence identities of the uniquely
predicted sequences against the wild-type sequence. The
sequence identity was computed excluding the Cys resi-
dues that formed disulfide bonds. We also calculated the
sequence identities of the homologous sequences and a
number of randomly generated sequences. We excluded
proteins with sequence identities greater than 70% (to
eliminate mutants) from the set of homologous proteins.
The random sequences were generated from genetic code–
based random numbers, as described above.

The second analysis is to measure the diversity of the
amino acid type at each position using the probabilistic
entropy, S, defined by

Snð f Þ ¼ -
X20

k¼1

f n
k ln f n

k , ð7Þ

where n and k represent the position and the amino acid
type, respectively. f n

k is the frequency ratio of amino acid k
at the position n in the sequences. The range of S is from 0
to ln20 (�3.0). If a position has a large value of S, the
variation of the amino acid types is large at the position.

Finally, we applied this method to the prediction of
variable sites on the NA molecule of influenza virus. The
prediction was performed for amino acid residues com-
posing the ligand-binding sites of NA. The main-chain con-
formation of NA (PDB entry = 2QWB), which forms a
complex with O-sialic acid (SIA), was used for the predic-
tion. The force-field parameters (van der Waals and elec-
trostatic parameters) for the SIA were obtained using the
antechamber package (45). The atomic partial charges
were computed with the am1bcc option (AM1 Mulliken
charge). Residues with a distance shorter than 6.0 s from
the side-chain atoms to SIA within the complex were
selected for the sequence prediction of NA. In this com-
putation, we performed three prediction procedures,
each consisting of 100,000 Monte-Carlo cycles to yield
300,000 sequences in total for the NA molecule. Again,
we discarded the initial 100 sequences.

RESULTS AND DISCUSSION

Prediction of Core Residues—We obtained 770 unique
sequences for the 12 core residues (positions 4, 6, 10, 17,
18, 20, 26, 28, 39, 41, 49, and 54) of the SH3 domain from
the 9,000 sequences generated by 10 prediction iterations.
Eight of the twelve positions, with the exceptions of posi-
tions 6, 17 20, and 41, were dominated by the native resi-
dues in the predicted sequences (Table 1). The predicted
models had similar hydrophobic interactions as those in
the X-ray structure at these positions. We discuss the
results that disagreed with the wild-type sequence below.

Positions 6 and 20 in the wild-type protein were Ala and
Phe, respectively. The sixth position, however, was occu-
pied by Met with the highest frequency (Table 1). Position

546 K. Ogata et al.

J. Biochem.

 at Peking U
niversity on Septem

ber 29, 2012
http://jb.oxfordjournals.org/

D
ow

nloaded from
 

http://jb.oxfordjournals.org/


20 was frequently occupied by Gly. These two amino acids
create a hydrophobic pair in the predicted structure, which
provides the foundation for the frequent generation of
the following five pairs of amino acids: (Ala, Phe), (Met,
Ala), (Met, Gly), (Phe, Ala) and (Phe, Gly), in which the
former is the amino acid at position 6, and the later is at

position 20. Note that the first pair is that found in the
wild-type protein. Considering the side-chain conforma-
tions, all of these pairs exhibited a well-packed conforma-
tion within the surrounding atoms in the X-ray structure
(Fig. 2). In the two pairs of (Ala, Phe) and (Phe, Ala), the
benzene ring of Phe always adopted the same position

Fig. 2. Comparison of the side-chain conformations in the
X-ray structure with those from predicted positions 6
and 20 of the SH3 domain. (a) Conformations of Ala 6 and

Phe 20 in the X-ray structure. (b)–(f) Predicted conformations
at position 6 and 20 are shown from the same viewpoint as that
in (a).

Table 1. Amino acid frequency of predicted sequences in SH3 domain.a

Amino acid
types

Position

Val 4 Ala 6 Phe 10 Asp 17 Leu 18 Phe 20 Leu 26 Ile 28 Ala 39 Asp 41 Ile 49 Val 54

Ala 0.22 0.33 0.54 0.34 0.09 0.06 0.77 0.37 0.15

Arg

Asn

Asp 0.20 0.00 0.00 0.05

Cys 0.06

Gln

Glu

Gly 0.06 0.43 0.10 0.15 0.30 0.05

His

Ile 0.17 0.60 0.49

Leu 0.93 0.23 0.09 0.18

Lys 0.42 0.05 0.10

Met 0.39 0.15

Phe 0.10 0.25 0.93 0.22 0.10

Pro

Ser

Thr

Trp

Tyr

Val 0.31 0.19 0.30 0.07 0.43 0.44
aFrequency of amino acid types are shown. The values in bold type represent the highest frequency. The underlined values are the wild type
amino
acids.
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by sharing the same space (Fig. 2a and b). Homologous
sequences, identified by a BLAST search of a non-
redundant sequence database (NRDB: available from
ftp://ftp.embl-heidelberg.de/pub/databases/nrdb/nrdb), did
not contain the (Phe, Ala) pair in the SH3 domain family.
Instead, the pair from the wild type is well conserved
throughout the family. We presume that this mutation
is structurally possible, but evolutionarily unselected, in
the family. Such a mutation, however, could be exploited
in artificial protein design.

Position 17 was occupied by Ala or Lys, while position 41
was filled by Ala or Gly, despite the presence of Asp at both
positions in the wild-type protein. In the X-ray structure,
OD1 of Asp41 forms two H-bonds with the N of Glu 43
(3.01 s) and the N of Lys 45 (3.16 s); Asp41 is buried inside
the protein. Our scoring function tends to be misleading
for buried hydrophilic residues; the value of the solvent
energy for the reference state, which was computed from
a single-residue representation of the query position, is
markedly lower than that for the folded state. In addition,
van der Waals interactions with the environmental atoms
under tight packing yield a low potential value. As a result,
small residues such as Ala or Gly, and occasionally Val and
Leu, are preferably assigned to the buried residues, instead
of the amino acids seen in the wild-type sequences.

By the prediction of the core residues of Protein G, 59
unique sequences were identified from the 9,000 sequences
generated by this method. The number of unique
sequences was considerably smaller than that seen for
SH3, indicating that the sequences converged to a narrow
solution set. The majority of the core positions were occu-
pied by the same amino acid residues as those seen in the
wild-type protein (Table 2). The frequencies of amino acid
correlation at positions 5, 26, 52 and 54 were greater than
90%. These results indicate that the amino acid sequences

converged both evolutionarily and physicochemically into
that seen in the wild-type protein.

Only poor agreement was observed at position 3, which is
a Tyr residue in the wild-type sequence (Table 2). At posi-
tion 3, Phe was predicted with a high frequency (97%),
instead of Tyr. In the X-ray structure, Tyr 3 is buried
within a hydrophobic core consisting of Ala 20, Ala 26,
and Phe 30. The OH group of Tyr 3 does not form a
hydrogen bond with the surrounding atoms of the protein
interior. The ratio of solvent-accessible surface area in the
buried state to that in the solvent-exposed extended
conformation was 3% using a 1.4 s water probe (46). As
the predicted sequences at positions 20, 26, and 30 coin-
cided with those seen in the wild-type protein with high
frequencies, the environment surrounding Tyr 3 appears
to be similar to that of the wild-type protein. At position 3,
Phe is likely to be more adaptable than Tyr for the given
main-chain conformation.

It is difficult to account for evolutionary issues in this
prediction method. The results, however, demonstrate
that this method is useful for the prediction or modeling
of structurally and energetically adaptable amino acid
sequences.

Prediction of the Entire Sequence—The sequence variety
from the prediction for the entire protein is considerably
different from that of the core residue regions (Table 3).
Over 70,000 unique sequences were obtained from the
99,600 sequences predicted by the methods with N = 1,
whereas for N = 15, over 90,000 sequences were obtained
in a similar fashion (Table 3). These unique sequences
exhibited a high similarity with each wild-type protein,
and are close to 25% identity. Especially, the average
sequence identity for SH3 domain (1CKA) was nearly
30%. These values ensure that our method sufficiently
worked to determinate proteins with the same fold (47).

Table 2. Amino acid frequency of predicted sequences in Protein G.a

Amino acid
types

Position

Tyr 3 Leu 5 Leu 7 Ala 20 Ala 26 Phe 30 Ala 34 Val 39 Phe 52 Val 54

Ala 0.05 0.78 1.00 0.85

Arg

Asn

Asp

Cys 0.07

Gln

Glu

Gly 0.15 0.08

His 0.12

Ile 0.44 0.46

Leu 0.95 0.22 0.12 0.14

Lys

Met 0.14 0.05 0.12

Phe 0.93 0.71 1.00

Pro

Ser

Thr

Trp

Tyr 0.07

Val 0.20 0.29 0.95
aSee legend in Table 1.
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For individual proteins, the maximum sequence identities
for all three proteins are over 30% and 1CKA is the largest
at 50.9%. In general, the proteins with a sequence identity
greater than 40% not only share the same folding pattern
but also have similar tertiary structure (18). Therefore the
predicted sequences possibly exhibit the same fold as the
wild-type proteins.

Figure 3 shows the distributions of the sequence identity
for the predicted sequences against the wild-type protein.
The distribution of the homologous proteins for 1PGB
does not appear in Fig. 3 due to a lack of homologous
proteins in the sequence database. The distribution of
the predicted sequences by the method with N = 15 for
1CKA and 5PTI were significantly overlapped onto those
of the homologous proteins. The distributions for N = 1
showed similar overlapping regions, but somewhat smal-
ler. The sequences distributing in the overlapping regions
would likely have the same fold as the wild-type protein
with a greater probability than those distributing outside
the overlapping regions. Therefore, majority of the pre-
dicted sequences from our method would be shown to
exhibit the same fold as the wild-type proteins. On the
other hand, the distributions of the random sequences
were clearly separate from those of the predicted and
homologous sequences. We conclude that the sequences
did not converge on the wild-type sequence by random
changes and the main-chain constraint guides the
sequences toward the wild-type sequence.

Efficiency of the 2nd Layer Monte Carlo Procedure—A
large part of the overlapped region is observed between
the two distributions of the methods with N = 1 and
N = 15 (Fig. 3). The average sequence identities predicted
by the method with N = 15 were apparently better than
that with N = 1 for 1CKA (Fig. 3a) and 5PTI (Fig. 3c),
although sequence identities for 1PGB were similar
between the two methods. Furthermore, when the amino-
acid sequence was reduced to four amino-acid groups by
their physicochemical properties (see footnote for Table 4),
the reduced sequence identities from N = 15 were larger
than those from N = 1 (Table 4). For core residues, the
2nd layer Monte Carlo procedure improved the reduced
sequence identity for each protein. These results suggest
that the 2nd layer Monte Carlo procedure effectively per-
formed on our test proteins. The average values of the
sequence identities on the method with N = 1 were similar
to those reported in previous studies (33). Therefore, we
expect that our method will produce amino acid sequences
more similar with those of wild-type proteins than the
previous methods do; especially on the reduced sequence
identities calculated for the four physicochemical amino-
acid groups.

Table 3. Results of the predicted sequences in the whole prediction.a

N = 1 N = 15 Random
Name of
Proteins

PDB
entry

Number of
sequences

Sequence identity (%) Number of
sequences

Sequence identity (%) Sequence identity (%)

maximum average maximum average maximum average

SH3 domain 1CKA 77,328 49.1 27.8 97,223 50.9 30.3 15.8 5.0

Protein G 1PGB 70,705 42.9 24.3 97,903 39.3 21.4 16.1 5.1

BPTI 5PTI 77,965 34.6 21.7 98,613 42.3 25.6 17.3 5.7
aThe sequence were predicted by two methods; one without and other with the 2nd layer Monte Carlo procedure, in which the number of
side-chain conformations, N, were set at 1 and 15, respectively.

Fig. 3. Distributions of the sequence identity of predicted
sequences of (a) 1CKA, (b) 1PGB and (c) 5PTI for the wild-
type sequence. The black and light gray bars represent the
predicted protein sequences with N = 1 and N = 15, respectively.
The dark gray and white bars indicate homologous and random
protein sequences, respectively. The histogram of the homologous
proteins in the 1PGB was hidden in (b) because the number of
homologous protein detected from the sequence databases was
not enough to compare the other distributions. The sequence
identities were calculated for all the positions, with the exception
of those Cys residues forming disulfide bonds.
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The probabilistic entropy values, S, in the prediction
with N = 1 tends to have the larger values than those
with N = 15 for all the query sites (Fig. 4). The predicted
sequences with N = 1 showed the most diversity of amino
acid type. The values of S with N = 1 in the vicinity of the
C-terminal region of the 1CKA and 1PGB have large
values. In particular, the amino acid types at residues
50 and 52 in 1CKA and the residues 45 and 47 in 1PGB
with N = 1 vary drastically due to the external physical
location. However, these position show the small S values
with N = 15. Regarding the residues located on the surface
of the proteins, a number of side-chain conformations
were accepted from the 2nd layer Monte Carlo procedure
sampling. On the other hand, the optimal side-chain con-
formation could hardly be detected by the predictions with
N = 1. Therefore, highly flexible surface side-chain con-
formations having high scoring values give likelihood to
change the amino acid types having low scoring values.

These results show that the 2nd layer Monte Carlo pro-
cedure could select the optimal side-chain conformation
from N ones and provided the stable conformation. Less
flexible side-chain conformations prevent the likelihood
of changing the side-chain types. Consequentially, the pre-
dicted sequences by the method with N = 15 were similar to
the wild-type ones.

Prediction of Variable Sites in NA Molecule of Influenza
Virus—To understand the mechanisms of viral infection, it
is important to predict the variable sites in the NA mole-
cule. We applied our method to the O-sialic acid (SIA)–
binding region of the NA molecule, for which the main-
chain conformation of the R292K mutant (PDB: 2QWB)
was used.

We obtained 1,467 unique sequences from the 300,000
sequences generated. The amino acid diversity of the
predicted sequences tended to be larger than that seen
in the sequences from the isolated wild-type viral strains
(Table 5). The majority of positions had more than four
candidate amino acids, including the wild-type amino
acid. Ten of the 11 amino acid residues that were conserved
among viral subtypes were consistent with the predicted
ones (Table 5). Three Arg residues at positions 118, 292,
and 371 form a pocket (26). Figure 5 illustrates this core
interaction site between SIA and NA (2QWB where Arg292
was mutated to Lys). Position 118 was predicted as Arg
or Lys, position 292 as Arg, Glu, and Lys, and position 371
was determined to be Arg. Arg was always included as one

Table 4. Sequence identity of the predicted sequences (%).a

Name of
proteins

N = 1 N = 15
PDB entry All Coreb All Coreb

maximum average maximum average maximum average maximum average

SH3 domain 1CKA 49.1 27.8 72.2 34.2 50.9 30.3 77.8 42.0

66.7 48.8 94.4 70.2 66.7 49.4 94.4 77.5

Protein G 1PGB 42.9 24.3 73.3 49.4 39.3 21.4 80.0 45.7

58.9 41.3 86.7 72.5 57.1 41.6 86.7 73.3

BPTI 5PTI 34.6 21.7 42.9 23.6 42.3 25.6 57.1 30.8

59.6 38.8 64.3 42.0 63.5 43.8 71.4 45.4
aThe sequence were predicted by two methods; one without and other with the 2nd layer Monte Carlo procedure, in which the number
of side-chain conformations, N, were set at 1 and 15, respectively. The results show the sequence identity calculated for 20 amino acid
(upperpart)and for4groupsonthebasisof theirphysicochemicalproperties:anacidicgroup (AspandGlu),apolargroup (Asn,Gln,Ser,Thr,
Tyr, and Cys), a basic group (Lys, Arg, and His), and a non-polar group (Trp, Phe, Gly, Ala, Val, Leu, Ile, Pro, and Met) (lower part).
bCore residues were defined those of which the solvent accessible surface area is less than 25%.

Fig. 4. Probabilistic entropy for each position of (a) 1CKA,
(b) 1PGB and (c) 5PTI. And the line graphs colored in black and
gray were the values of S on the predictions with N = 1 and N = 15,
respectively. The values of S at the Cys residues forming disulfide
bonds in 5PTI were set at 0.
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of the predicted amino acids at each of the three positions.
In the predicted sequences, position 292 had a different
charged residue (Glu) from that seen in the wild type
(Arg). In the predicted structure, this position may interact
with the O8 atom in the SIA molecule, possibly via the
COOH proton of Glu. These differences in amino acid
residues from the wild-type residues in viral proteins
may be interpreted as mutations that disappeared in the
evolutionary process or as sequences that may emerge as
structurally and physicochemically adaptable mutations
in the future.

In conclusion, we have developed a method to predict the
amino acid sequences that are adaptable to a given main-
chain conformation. The predicted sequences correlated
well with the wild-type sequences. The structures of the
predicted amino acid sequences also exhibited coordinated
mutations between large and small residues. The side-
chain conformations of these sequences demonstrated
close packing with the main-chain atoms, indicating that
the structures of these predicted sequences may form the
same folding conformations as the wild-type proteins. In
our prediction of the NA molecule in a complex with an

SIA molecule, we could obtain similar amino acid types as
those seen in the wild type, especially those residues
contacting the SIA molecule. The predicted amino acid
types at a number of query positions, however, were not
identified in the homologous sequences identified from
a homology search using BLAST. We hypothesize that,
while these mutant sequences were structurally selected
in our computations, they were not functionally selected
in nature. Therefore, there is a possibility that these
sequences might appear in the future. The structure of
the predicted sequences should be stable, because the scor-
ing functions corresponding to DDG were computed to be
favorable; only those sequences adaptable to the backbone
structure were obtained. This method could be useful to
identify important residues even in a highly variable viral
protein. This method may allow us to develop novel drugs
and vaccines by predicting the variations within a target
molecule.
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